A cross-border community for researchers with openness, equality and inclusion

ABSTRACT LIBRARY

Advancements in Lung Cancer Diagnosis: A Comprehensive Study on the Role of PCA, LDA, and t-SNE in Deep Learning Frameworks

Publisher: USS

Authors: B Vikas, Koneru Lakshmaiah Education Foundation; Bowrampet Makkapati Satya Sukumar, Acharya Nagarjuna University Bogireddy Srinivasa Rao, Horizon Systems Inc K.S. Balamurugan, Karpaga Vinayaga College of Engineering and Technology Deepa M, Sri Shakthi Institute of Engineering and Technology

Open Access

  • Favorite
  • Share:

Abstract:

In the ever-evolving domain of medical imaging, the integration of deep learning techniques holds the promise of transformative advancements. This research delved into the potential of employing data transfer within deep learning architectures for the automated detection of three distinct lung cancer types. Leveraging sophisticated methodologies like linear discriminant analysis (LDA), t-SNE, and PCA, the study aimed to enhance accuracy and efficiency in detecting malignancies from lung CT scan images. On rigorous evaluation, the models demonstrated compelling accuracy rates: salivary gland-type lung tumors at 90.5%, pleomorphic (spindle/giant cell) carcinoma at 88.2%, and primary pulmonary sarcomas at 91.3%. Additionally, ROC curve analysis further highlighted the robust discriminative capability of the models across varied decision thresholds. The promising results accentuate the potential of integrating data transfer techniques with deep learning in a clinical setting. This research not only exhibits a significant stride in lung cancer detection but also paves the path for further innovations in automated medical image analysis.

Keywords: Data transfer,deep learning,lung cancer detection,dimensionality reduction,ROC curve analysis

Published in: IEEE Transactions on Antennas and Propagation( Volume: 71, Issue: 4, April 2023)

Page(s): 2908 - 2921

Date of Publication: 2908 - 2921

DOI: 10.1109/TAP.2023.3240032

Publisher: UNITED SOCIETIES OF SCIENCE