A cross-border community for researchers with openness, equality and inclusion

ABSTRACT LIBRARY

Cyber-attack detection using Gradient Clipping Long short term memory networks (GC-LSTM) in Internet of Things (IoT)

Publisher: USS

Authors: Ayyalasomayajula Madan Mohan Tito, Aspen University, Arizona Mandala Vishwanadham, Data Engineering Lead, Cummins, Inc Hanumat Prasad A, Kallam Haranadha Reddy Institute of Technology Gangopadhyay Amit, Mohan Babu University (Erstwhile Sree Vidyanikethan Engineering College) Shrivastava Neeraj, Research scholar from Medicaps university Sundaram Ajith, Amrita School of Business

Open Access

  • Favorite
  • Share:

Abstract:

The Internet of Things (IoT) is a network that connects a vast number of objects, enabling them to communicate and interact each other with human intervention. The IoT is seeing rapid growth in the field of computing. However, it is important to acknowledge that IoT is very susceptible to many forms of assaults due to the hostile nature of the internet. In order to address this problem, it is necessary to implement practical steps to ensure the security of IoT networks, such as the implementation of network anomaly detection. While it is impossible to completely prevent assaults indefinitely, timely discovery of an attack is essential for effective defence. Because IoT devices have limited storage and processing power, standard high-end security solutions cannot protect them. In addition, IoT devices are now autonomously linked for extended durations. Consequently, it is necessary to create advanced network-based security solutions such as deep neural network solutions. While several research have focused on the use of neural network methods for attack detection, there has been less emphasis on detecting assaults especially in IoT networks. The objective of this research is to develop a Gradient Clipping Long Short-Term Memory network (GC-LSTM) that can efficiently and promptly identify IoT network assaults. The Bot-IoT dataset is employed for evaluating various detection methodologies. The incorporation of additional features resulted in improved results. The GC-LSTM model, as proposed, achieves a remarkable accuracy of 99.98%.

Keywords: Cyberattack,internet of things,Neural network,intrusion detection,bot-IoT dataset

Published in: IEEE Transactions on Antennas and Propagation( Volume: 71, Issue: 4, April 2023)

Page(s): 2908 - 2921

Date of Publication: 2908 - 2921

DOI: 10.1109/TAP.2023.3240032

Publisher: UNITED SOCIETIES OF SCIENCE